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Abstract 
 

The underlying asset pool of Collateral Debt Obligations (CDOs) 
simultaneously encompasses credit risk and market risk. However, the 
standard CDO pricing model not only underestimates the risk to the 
asset pool due to a poor description of the correlation structure among 
obligors, but is also incapable of reflecting the impacts of 
interdependent markets, credit risks and systematic sudden shocks on 
the asset pool. This paper studies the joint impact of interrelated 
market and credit risk factors on the key inputs of CDO pricing 
(default probability, default correlation and default loss rate) under 
the framework of factor copula CDO pricing model and constructs a 
risk-integrated model for CDO pricing. In addition, we extend the 
static integrated model to a dynamic version by allowing the risk 
factors driven by the copula-GARCH process. The simulation results 
show that, compared with an integrated model, the premium of senior 
tranches is significantly lower under the standard model. Such 
difference is mainly due to different assumptions of the distributions of 
risk-driving factor. 
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1. Introduction 

Credit derivatives have played an active role in credit risk management around 
the world, and Collateral Debt Obligations (CDOs) have been one of the most 
rapidly developed credit derivatives. While the development of the global CDO 
market has been in full swing, the full-blown subprime crisis in the United States 
that began in August 2007 has cast a shadow over such development. The problem, 
which stemmed from the subprime mortgage market, quickly spread to global 
financial markets due to the credit’s highly leveraged nature, leading a high number 
of mortgage lenders into bankruptcy and many world-renowned commercial banks, 
investment banks, and hedge funds into liquidity difficulties. In fact, the invalidity of 
the CDO pricing models was one of the important factors underlying the crisis. 
Therefore, it is vital to rethink the pricing theory of credit derivatives in ways other 
than attaching importance to financial regulations. 

CDOs have two different structures--cash CDOs and synthetic CDOs. The 
underlying assets of cash CDOs can be seen as a series of default swaps in which the 
default probabilities of the lenders can be attained from the price of the credit default 
swap (CDS) markets, while those of the latter have poor liquidity (loans and bonds 
for instance). Therefore, we are not able to obtain default probabilities of synthetic 
CDOs from market price. In fact, pricing synthetic CDOs is always executed by 
rating agencies. However, as we will address below, standard synthetic CDO pricing 
not only underestimates the risk to the asset pool due to a poor description of the 
correlation structure among obligors, but is also incapable of reflecting the impacts 
of interdependent markets, credit risk and systematic sudden shocks on the asset pool. 
The pricing of synthetic CDOs is therefore biased. In this paper, we provide a 
risk-integrated framework for synthetic CDO pricing. 

Although CDOs --with good attributes of asset securitization and credit 
derivatives-- can effectively transfer and disperse credit risks to meet the needs of 
different investors, CDOs carry multiple risks. The CDO asset pool is faced not only 
with the credit risks of debtors, but also market risks such as random changes of 
interest rates and asset prices. These market risks will have a significant impact on 
default probability, default correlation, and long-term discounted cash flow. 
Therefore, the risk premium of the CDO tranches should compensate for such 
market and credit risks. 

There is a complicated interaction between market risk and credit risk, and the 
development of CDOs has established stronger internal mechanisms between these 
two risks. In the financial crisis in the U.S., one of the most important reasons for the 
accumulation of subprime mortgages was low interest rates over a long period. 
When interest rates began to increase steadily and real estate prices declined sharply, 
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the solvency of the debtor changed greatly, and the subprime mortgage crisis 
exploded. The crisis spread to other capital markets through CDOs, eventually 
resulting in extremely scarce market liquidity. This experience shows that CDOs and 
other credit derivatives are not only the link between market risk and credit risk, but 
also the bridge for the transferring of risk between different markets, such as from 
the real estate market and financial institutions to capital markets. Such interaction 
embodies a systemic feature of the risk. Particularly, superposition effects often leave 
the debtor with a sudden systematic risk shock. Therefore, we have to consider the 
interaction between risks when we assess the expected loss in the CDO asset pool. 

The normal copula-factor model, the current mainstream CDO pricing model, 
not only underestimates the risk to the asset pool due to a poor description of the 
correlation structure among obligors, but is also incapable of reflecting the impacts 
of interdependent markets, credit risks and systematic sudden shocks on the asset 
pool. Therefore, this paper studies the joint impact of interrelated market and credit 
risk factors on the key inputs of CDO pricing (default probability, default correlation 
and default loss rate) under the framework of the factor copula CDO pricing model 
and constructs a risk integrated model for CDO pricing. 

The model has the following characteristics: First, the factors of the market risk 
are introduced into the CDO pricing model by considering the impact of the 
stochastic risk-free rate on cash flow discounting and the influence of market risk 
driving factors on the debtors’ credit status (including default probability and 
recovery). Second, the risk driving factor has a heavy tailed distribution so that it can 
ably describe the loss distribution caused by the debtors’ default correlation structure. 
Third, market risk factors and credit risk factors have lower tail dependency that can 
measure the losses in the asset pool with the superposition of effects produced by the 
interaction between the risks. Fourth, a random recovery rate model is constructed in 
which the recovery rate depends on the debtors’ systematic risk factors thereby 
influencing the credit status distinctly. Finally, default probability, the recovery rate 
and the risk-free rate are influenced by the same risk driving factor. On the one hand, 
these key parameters are mutually related. On the other hand, given the common risk 
factor, default probability, the recovery rate and the risk-free rate are independent of 
each other. In addition, in order to measure the impact from the change of the debtors’ 
credit quality on CDO tranche pricing, we extend the static integrated model to a 
dynamic version by allowing the risk factors to be driven by the copula-GARCH 
process. 

The rest of the paper proceeds as follows. Section 2 reviews the literature on 
CDO pricing in the framework of factor copula model. Section 3 sets forth a 
risk-integrated model for CDO pricing and extends the static-integrated model to a 
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dynamic version. We also discuss the implementation approach for the model. 
Section 4 details the method for obtaining the required model parameters from 
quotations. Further, the section illustrates the application of the integrated-risk model 
for synthetic CDO pricing by means of numerical examples. Section 5 concludes. 

2. Literature Review 

The literature on CDO pricing models can be divided into two strands according 
to the model design method: the top-down approach and bottom-up approach. The 
top-down approach models the change process of the CDO asset pool’s total loss in 
accordance with the underlying asset’s credit status. The bottom-up method is similar 
to the model for measuring portfolio credit risks, and includes the structure model, 
the intensity model and the factor copula model. 

Copula model has much advantage over other models mentioned above. 
According to Sklar's Theorem, any multivariate joint distribution can be written in 
terms of univariate marginal distribution functions and a copula which describes the 
dependence structure between the variables. In this paper, we base on the 
dependence between market risk and credit risk to construct risk-integrated model 
for CDO pricing. Particularly, the correlation becomes more pronounced at the lower 
tail. Therefore, the copula function allows us to freely describe the dependence 
between random variables and therefore is suitable for our model setup. In fact, the 
normal factor copula model was initially set forth by Li (2000), and became the 
current mainstream model for CDO pricing. 

The factor copula model measures the default correlation of the debtors using the 
copula function and the common factor. Semi-analytical expressions can be obtained 
using the factor copula model and thus it lowers the model risk. However, normal 
factor copula model faced many challenges. First, it is incapable of reflecting the 
impact of dynamic changes in credit quality on the asset pool. Second, it fails to fit 
the fat-tail character of the loss distribution, so the price based on the model is quite 
different from the CDO tranche’s quotation. Thus, two ideas have been suggested to 
improve the standard model. The first uses other copula functions to describe the 
correlation between the debtors, such as the Student t copula function (Laurent and 
Gregory, 2005; Schloegl and O’Kane, 2005; Schönbucher and Schubert, 2001) and 
implied copula function (Hull and White, 2006). In such models, default 
probabilities of the debtors are obtained from the market quotation so correlation 
between the debtors is reflected. The second idea involves replacing the normal 
factor model with a fat-tail distribution function, such as the double t distribution 

(Hull and White, 2004), NIG distribution (Kalemanova et al., 2007), variance gamma 
distribution (Moosbrucker, 2006), heavy-tailed single-factor copula models (Wang et 
al., 2009), and the generalized hyperbolic distribution (Eberlein et al., 2008) (whose 
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special forms are NIG and variance gamma distribution, etc.). According to 
Andersen and Sidenius (2004), the correlation between the debtors is random and 
closely related to the business cycle. Therefore, Andersen and Sidenius (2004) 
extend the normal model to the random correlation coefficient model (RFL), and 
study the effect of a random recovery rate on CDO tranche pricing. Burtschell et al. 
(2009) compare the efficiencies of the factor models such as the normal copula 
model, the t-copula model, the Clayton copula model, the double t copula model, the 
M-O copula model and the two-state RFL model, and point out that the double t 
copula model and two-state RFL model better fit the synthetic CDO market 
quotation and the implied “correlation smile” curve. Burtschell et al. (2009) also 
explain the relationship between CDO tranche prices and the default correlation 
using the random order theory. 

However, the copula models above only calculate the future expected losses 
over a fixed time and thus are static models. As such, they are not able to reflect the 
changes in the CDO asset loss over time. Although the Archimedean copula model 
has been established to extend the model to a dynamic version (Totouom and 
Armstrong, 2005; Totouom and Armstrong, 2007) and is able to cover the related 
structure of variables, the assumptions of homogenous and symmetric portfolios 
limit its practical application. Lamb et al. (2008) introduce an autoregressive process 
of the common factors and extend the normal copula model with a single factor to a 
dynamic situation, and the dynamic process of loss rate is achieved under the 
condition of a large sample. However, the model is not able to cope with a multiple 
factors model. 

This paper studies the joint impact of interrelated market and credit risk factors 
on the key inputs of CDO pricing (default probability, default correlation and default 
loss rate) under the framework of the factor copula CDO pricing model and 
constructs a risk-integrated model for CDO pricing. Our contributions are mainly in 
two aspects: First, we introduce the Clayton copula function to describe 
tail-correlated market and credit factor. Second, we consider joint impact of 
interrelated market and credit risk factors on CDO pricing and construct a 
risk-integrated model for CDO pricing. This has more implications to the U.S. 
financial crisis than existing literature. Finally, existing CDO pricing literature, if not 
following static models, are with simple assumptions or single factor, this paper 
extends the static risk-integrated two-factor model to a dynamic version by allowing 
the risk factors driven by the copula-GARCH process. 

3. Pricing Model for Synthetic CDOs 

The prices of CDO tranches are actually the rates given to the protection seller. 
Therefore, we can build up pricing models by determining the parameters of each 
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CDO tranche. First, the expected loss of each tranche from the loss distribution of 
the asset pool is determined to achieve the default probability in certain timeframes. 
Second, the loss distribution of the asset pool is determined by the default probability, 
default loss rate and asset correlation. Third, we determine the joint default 
probability by looking at the differences between various CDO pricing models, 
which mainly involve the correlation structure determined by the common risk 
factors. Using the default loss rate and the distribution of common factors, the loss 
distribution of the asset pool at various times becomes obvious, See Figure 1. 

[Insert Figure 1 approximately here] 

3.1 Integrated Model 

This paper studies the joint impact of interrelated market and credit risk factors 
on the key inputs of CDO pricing such as default probability, default correlation and 
default loss rate under the framework of the factor copula CDO pricing model and 
constructs a risk integrated model for CDO pricing. The market risk factors include 
the interest rate in different terms, the exchange rate, the stock index and real estate 
price, etc. The credit risk factors contain industry indexes, pledge prices and 
macroeconomic factors such as GDP, interest rate, inflation rate, unemployment rate 
for example. Due to the common risk driving factor, market risk and credit risk are 
correlated. In addition, the default correlation between different debtors can be 
derived from the common risk driving factor. Therefore, we can construct the 
integrated model from the common risk driving factor. On one hand, we can quantify 
the correlation between market risk and credit risk. On the other hand, we can also 
understand what systematically impacts the debtor's credit status and its correlation. 
Considering the large number of risk-driven factors, we first refine the risk factors to 
select the representative ones. In this paper, we choose the one-year Libor as a 
representation of market risk factors, and common macro-economic factors are 
obtained from the industry index. 

3.1.1 Conditional Default Probability 

There are n different debtors in the asset pool. 𝑋𝑖 is ith debtor's credit status. 
Usually this is indicated by the standardized return on assets. The factor model can 
be built as: 

 𝑋𝑖 = 𝜌𝑐𝑋𝑐 + 𝜌𝑟𝑋𝑟 + �1 − 𝜌𝑐2 − 𝜌𝑟2𝜀𝑖     (1) 

Where 𝜌𝑐2 + 𝜌𝑟2 < 1, 𝑋𝑐 and 𝑋𝑟 are the credit risk factor and market risk factor 
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respectively, 𝜀𝑖  is the specific risk factor for the ith debtor. 𝜌𝑐(> 0) is the 
sensitivity coefficient of macro-economic factors. If the macro-economic factor has a 
higher value, the return on assets will be higher, and the debtor will be less likely to 
default. 𝜌𝑟(< 0) is the sensitivity coefficient of interest rate. The borrowing cost of 
debtors will increase when the interest rate increases, resulting in the deterioration of 
the debtor’s credit situation. Therefore, the poorer the macroeconomic condition and 
the higher the interest rate, the higher the risk of default. 

In addition, we assume that 𝜀𝑖 is independent, and that it is independent from 
the common risk factors 𝑋𝑐 and 𝑋𝑟. Furthermore, it follows standard t distribution 
with the degrees of freedom 𝑣3: 

𝜀𝑖~𝑡𝑣3 

The two-factor model set-up is actually a special case of the multiple factor 
setting in Hull and White (2004). By only considering two factors, we can more 
deeply explore the relationship between market risk and credit risk. As we have 
pointed out, the real situation is that complicated interaction exists between market 
risk and credit risk and has contributed significantly to the U.S. financial crisis. 
Therefore, we incorporate their relationship into the integrated model. 

The marginal distributions of 𝑋𝑐 and 𝑋𝑟 follow the standard t distribution 
with the degrees of freedom 𝑣1 and 𝑣2 respectively. And they have the Clayton 
copula function with the same parameter 𝜃, namely: 

 𝑋𝑐 ,𝑋𝑟~𝐶𝑐𝑙(𝑢1,𝑢2),𝑢1 = 𝑡𝑣1(𝑋𝑐),𝑢2 = 𝑡𝑣2(𝑋𝑟)    (2) 

In fact, the Clayton copula function can describe the left tail correlation between the 
macro-economic factor 𝑋𝑐 and the interest rate −𝑋𝑟(Charpentier and Juri, 2006). 

The distribution of 𝑋𝑖 , 𝐻𝑖(𝑋𝑖)  is determined by the common factors: 
𝑋𝑐 ,𝑎𝑛𝑑 𝑋𝑟, as well as specific risk factors 𝜀𝑖. When the common factors have a 
heavy tail, 𝑋𝑖 is more likely to reach extreme values at the same time; thus the 
possibility of simultaneous assets default increases. When the specific risk factor has 
a thick tail, extreme values will occur on assets, and lower levels of loss are likely. 
The correlation between 𝑋𝑐 and 𝑋𝑟 in the integration model further increases the 
probability of simultaneous defaults.  

𝐻𝑖(𝑥𝑖) can be achieved by numerical simulation, and the default probability of 
the debtor is: 

 𝑃𝑡
𝑖|𝑋𝑐,𝑋𝑟 = 𝑡𝑣3 �

𝐻𝑖
−1�𝐹𝑖(𝑡)�−𝜌𝑐𝑋𝑐−𝜌𝑟𝑋𝑟

�1−𝜌𝑐2−𝜌𝑟2
�     (3) 
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3.1.2 Recovery Rate  

In the standard CDO pricing model, the recovery rate is usually assumed to be 
constant. This is inconsistent with reality, as Altman et al. (2005) has shown that the 
recovery rate and default probability have a negative correlation through empirical 
investigation. Therefore, we assume that recovery rate is random and with a negative 
correlation with the asset pool's loss. Particularly, we set 𝑅𝑖 as the recovery rate, 
which follows beta distribution. The use of the beta distribution to model a random 
recovery rate is simply following related literature (e.g. Gupton and Stein, 2002; 
Anderson and Sidenius, 2004). The first two moments of the beta distribution is 
approximated by the historical statistical data of recovery rates, see Eq. (4): 

 �
𝑅𝑖 = 𝐹(𝜇𝑖 + 𝜎𝑖𝛿𝑖)

𝛿𝑖 = 𝛼𝑖𝑋𝑐 + 𝛽𝑖𝑋𝑟 + �1 − 𝛼𝑖2 − 𝛽𝑖2𝜂𝑖
�     (4) 

F is the cumulative distribution function of the beta distribution. 𝜇𝑖, 𝜎𝑖 are the 
mean and standard deviation. 𝛼𝑖 ∈ 𝑅+,𝛽𝑖 ∈ 𝑅−, 𝛼𝑖2 + 𝛽𝑖2 < 1. 𝜂𝑖 follows standard 
normal distribution. Thus, the recovery rate is positively correlated to credit status 𝛿𝑖, 
which is positively correlated to the macroeconomic factor  𝑋𝑐  and negatively 
correlated to the interest rate factor 𝑋𝑟. According to Eq. (3), holding other factors 
constant, recovery rate is thus negatively correlated to the default probability. 

3.1.3 Risk-free Rate 

We assume that stochastic risk-free rate evolves as an Ornstein-Uhlenbeck 
process: 

 𝑑𝑟(𝑡) = 𝜅[𝜃 − 𝑟(𝑡)]𝑑𝑡 + σ𝑑𝑊(𝑡), 𝑟(0) = 𝑟0    (5) 

where 𝑟0, 𝜅, 𝜃,σ  are positive constants proposed by Vasicek (1977). 𝑟(𝑡) is 

normally distributed with mean 𝜃 + [𝑟(0) − 𝜃]𝑒−𝜅𝑡and volatility�𝜎2

2𝜅
(1 − 𝑒−2𝜅𝑡). 

The closed form solution for this stochastic differential equation is: 

 𝑟(𝑡) = 𝜃 + [𝑟(0) − 𝜃]𝑒−𝜅𝑡 + �𝜎2

2𝜅
(1 − 𝑒−2𝜅𝑡)𝑊(𝑡)   (6) 

3.1.4 Total Loss Distribution Function 

The recovery rate in the integrated model is stochastic. Thus the fast Fourier 
Transform method that assumes constant loss of units is not able to accurately 
calculate the distribution of the total loss in the integrated model. 

Instead, we use the “probability bucketing” approach proposed by Hull and 
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White (2004) to implement the integrated model.1

We can obtain the value of 𝑝𝑘 and 𝐴𝑘 through an iterative procedure. First, we 
assume that there are no assets in the asset pool, so 𝑝1 = 1,𝑝𝑘 = 0 for 𝑘 > 1. We 
also have 𝐴1 = 0,𝐴𝑘 = 0.5(𝑏𝑘 + 𝑏𝑘+1) for 2 ≤ 𝑘 ≤ 𝐾 − 1 and 𝐴𝐾 = 𝑏𝐾 . Suppose 
that we have calculated the  𝑝𝑘 and  𝐴𝑘when the first j-1 debt instruments are 
considered and that the loss given default from the jth debt instrument is 𝐿𝑗  and the 
probability of default is 𝛼𝑗. Define 𝑢(𝑘) as the bucket containing 𝐴𝐾 + 𝐿𝑗  for 1 ≤
𝑘 ≤ 𝐾. When 𝑢(𝑘) > 𝑘, the updating equation system is: 

 We divide the total losses by time 
T into the following intervals {𝑏1, 𝑏2} … {𝑏𝑘−1, 𝑏𝑘} … {𝑏𝐾−1, 𝑏𝐾} , {𝑏𝐾 ,∞} .Our 
objective is to estimate the probability that the total loss lies in the kth bucket. Let 
𝑝𝑘 be the probability that the loss lies in the kth bucket by time T. Let 𝐴𝑘 be the 
mean loss in the kth bucket. 

 

⎩
⎪
⎨

⎪
⎧

𝑝𝑘 = 𝑝𝑘∗ − 𝑝𝑘∗𝛼𝑗
𝑝𝑢(𝑘) = 𝑝𝑢(𝑘)

∗ + 𝑝𝑘∗𝛼𝑗
𝐴𝑘 = 𝐴𝑘∗

𝐴𝑢(𝑘) =
𝑝𝑢(𝑘)
∗ 𝐴𝑢(𝑘)

∗ +𝑝𝑘
∗𝛼𝑗�𝐴𝑘

∗ +𝐿𝑗�

𝑝𝑢(𝑘)
∗ +𝑝𝑘

∗𝛼𝑗

�      (7) 

where 𝑝𝑘∗ ,𝑝𝑢(𝑘)
∗ ,𝐴𝑘∗  are the values of 𝑝𝑘,𝑝𝑢(𝑘),𝐴𝑘  before the kth asset is 

considered. When 𝑢(𝑘) = 𝑘, the updating equations are: 

 �
𝑝𝑘 = 𝑝𝑘∗

𝐴𝑘 = 𝐴𝑘∗ + 𝐿𝑗𝛼𝑗
�       (8) 

3.1.5 Pricing Equation of Synthetic CDO Tranche 

 Synthetic CDO pricing involves two main bodies: the issuer, i.e., the buyer of 
the protection, and the investor, i.e., the seller of the protection. Investors receive 
fixed cash flow from the issuers regularly. This is the return side. When the 
underlying assets of a CDO are affected by the loss of the asset pool, investors are 
required to compensate the buyers for the loss correspondingly. This is the loss side. 
Synthetic CDO tranche pricing is used to determine a reasonable rate of return to 
equalize the discounted value of the cash flows for the two sides with a risk-neutral 
probability. Synthetic CDOs’ cash flow depends on the cumulative loss distribution 
of the underlying assets. Therefore, we can obtain the CDO tranche price according 
to the calculated loss distribution of the asset pool. 

1) Loss Side 

For example, when the portion [𝑎, 𝑏] of the underlying asset pool suffers losses, 

                                                             
1 For detailed steps of the “probability bucketing” approach, please refer to Hull and White (2004). 
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the seller of the protection will compensate the buyer. 𝐿𝑡
[𝑎,𝑏] is the accumulated loss: 

 𝐿𝑡
[𝑎,𝑏] = [𝐿(𝑡) − 𝑎]+ − [𝐿(𝑡) − 𝑏]+     (9) 

𝐸𝑄 �𝐿𝑡
[𝑎,𝑏]� is the expected loss for the tranche  [𝑎, 𝑏] with the risk-neutral 

probability at time t. Then, 

 𝐸𝑄 �𝐿𝑡
[𝑎,𝑏]� = (𝑏 − 𝑎)𝑄[𝐿(𝑡) > 𝑏] + � (𝑥 − 𝑎)𝑑𝐹𝐿

𝑄(𝑥)
𝑏

𝑎
 

 = (𝑏 − 𝑎)𝑄[𝐿(𝑡) > 𝑏] + ∑ (𝑘 − 𝑎)𝑄[𝐿(𝑡) = 𝑘]𝑏
𝑘=𝑎    (10) 

𝐿𝑡
[𝑎,𝑏] is a jump process, so the default payment is a augmentation of 𝐿𝑡

[𝑎,𝑏]. In 

other words, when 𝐿𝑡
[𝑎,𝑏] jumps, the payment is  𝐿𝑡+

[𝑎,𝑏] − 𝐿𝑡
[𝑎,𝑏] . Define Stieltjes 

integration of  𝐿𝑡
[𝑎,𝑏] , and then the expected discounted value of loss for the 

tranche [𝑎, 𝑏] is: 

 𝐸[𝐷𝐿] =  𝐸𝑄 �∫ 𝐸𝐵(0, 𝑡)𝑑𝐿𝑡
[𝑎,𝑏]𝑇

0 �     (11) 

Where 

 𝐸𝐵(0, 𝑡) = 𝐸 �𝑒𝑥𝑝 �−∫ 𝑟(𝑠)𝑑𝑠𝑡
0 ��     (12) 

2) Return Side 

The seller of the protection can get regular periodic premiums with the fixed 
rate s by the buyer. The principal is the value of tranche [𝑎, 𝑏] at the expiration date, 
and ∆𝑖= 𝑡𝑖 − 𝑡𝑖−1 is the payment frequency. To simplify the calculation, we ignore 
the accrued interest when default occurs between two payment days, then the 
expected discounted value of revenue for the tranche [𝑎, 𝑏] is: 

 𝐸[𝑃𝐿] = 𝑠 ∑ 𝐸𝐵(0, 𝑡𝑖)∆𝑖 �𝑏 − 𝑎 −  𝐸𝑄 �𝐿𝑇
[𝑎,𝑏]��𝐼

𝑖=1    (13) 

Therefore, the fair price of the tranche[𝑎, 𝑏] is: 

 s = 𝐸[𝐷𝐿]
𝐸[𝑃𝐿] =

𝐸𝐵(0,𝑇) 𝐸𝑄�𝐿𝑇
[𝑎,𝑏]�+∫ 𝐸[𝑟(𝑡)] 𝐸𝑄�𝐿𝑡

[𝑎,𝑏]�𝐸𝐵(0,𝑡)𝑑𝑡𝑇
0

∑ 𝐸𝐵(0,𝑡𝑖)∆𝑖�𝑏−𝑎− 𝐸𝑄�𝐿𝑇
[𝑎,𝑏]��𝐼

𝑖=1
   (14) 
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3.2 Dynamic Integrated Model 

Research has been conducted on the dynamic CDO pricing models. In the 
top-down approach, we model the change process of the CDO asset pool’s total loss 
in accordance with the underlying asset’s credit status. In the bottom-up approach, 
which we simulate the dynamic process of assets loss, and then solve the cumulative 
loss distribution of the asset pool. However, research is mostly based on structured or 
simplified models. Rare studies use the factor copula model to analyze the dynamic 
process of the loss. The factor model’s biggest flaw is that the entire loss on the asset 
pool is only dependent on the simulation values of the factors driving risk at the 
beginning time. This means that the credit circumstance will not change for five to 
ten years, which obviously does not correspond to reality. Therefore, we extend the 
model by introducing the timing characteristics of the risk driving factors. In this 
way, we can examine the impact of the debtor's credit quality changes, i.e., the 
timing characteristics of default probabilities and recovery rate, on the CDO tranche 
pricing. 

3.2.1 Model Construction 

In order to construct the dynamic model, we extend Equation (1) and (4): 

 𝑋𝑖𝑡 = 𝜌𝑐𝑋𝑐𝑡 + 𝜌𝑟𝑋𝑟𝑡 + �1 − 𝜌𝑐2 − 𝜌𝑟2𝜀𝑖𝑡    (15) 

 �
𝑅𝑖𝑡 = 𝐹(𝜇𝑖 + 𝜎𝑖𝛿𝑖𝑡)

𝛿𝑖𝑡 = 𝛼𝑖𝑋𝑐𝑡 + 𝛽𝑖𝑋𝑟𝑡 + �1 − 𝛼𝑖2 − 𝛽𝑖2𝜂𝑖𝑡
�     (16) 

The parameter restrictions are the same as the static model. We capture the 
correlation and timing characteristics of the risk driving factors 𝑋𝑐  and 𝑋𝑟 using the 
AR-copula-GARCH model. Specifically, 𝑋𝑗𝑡 , 𝑗 = 𝑐, 𝑟 follows the GARCH process: 

 

⎩
⎪
⎨

⎪
⎧ 𝑋𝑗𝑡 = 𝜇𝑗 + ∑ 𝜙𝑖𝑗𝑋𝑗,𝑡−𝑖

𝑝
𝑖=1 + 𝜀𝑗𝑡

𝜀𝑗𝑡 = �ℎ𝑗𝑡𝑢𝑗𝑡
ℎ𝑗𝑡 = 𝑤𝑗 + 𝑐𝑗𝜀𝑗,𝑡−1

2 + 𝑑𝑗ℎ𝑗,𝑡−1

(𝑢𝑐𝑡,𝑢𝑟𝑡)|𝐼𝑡−1~𝐶𝑐𝑙 �𝑡𝑣1(𝑢𝑐𝑡), 𝑡𝑣2(𝑢𝑟𝑡)�

�    (17) 

In other words, we model the macroeconomic factor and interest rate factor 
with a pth-order autoregressive process, and assume that their marginal distributions 
follow the standard t distribution of free degree of 𝑣1 and 𝑣2 respectively. 



12 
 

3.2.2 Model Implementation 

Monte Carlo simulation is used to implement the model (15)-(17). The fixed 
payment times are 𝑡0, 𝑡1 ⋯ 𝑡𝑘 ⋯ 𝑡𝐾. 

Step 1: Estimate the parameters using market quotations; 

Step 2: Forecast ℎ𝑗𝑡𝑘 , 𝑗 = 𝑐, 𝑟,𝑘 = 1⋯𝐾 based on the AR-copula-Garch model; 

Step 3: Simulate 𝑢1,𝑢2 on 0 to 1 using copula function at 𝑡𝑘 for 𝑘 = 1⋯𝐾, which 
represents the correlation structure of 𝐶𝑐𝑙(𝑢1,𝑢2); 

Step 4: Get the path for 𝑋𝑗𝑡𝑘 , 𝑗 = 𝑐, 𝑟,𝑘 = 1⋯𝐾 from step 2 and 3; 

Step 5: Assume that default is in the absorbing state. Let function 𝐹𝑖(𝑡𝑘) be the 
probability of the first default of debtor i between 𝑡𝑘−1 and 𝑡𝑘; 

Step 6: When 𝐹𝑖(𝑡𝑘) is known, 𝐻𝑖−1( 𝐹𝑖(𝑡𝑘) ) is the threshold value of the debtor 
default at [𝑡𝑘−1, 𝑡𝑘]. 𝐻𝑖(∙) is the distribution function of 𝑋𝑖; 

Step 7: 𝑑𝑘 is set as the number of default assets for the period of [𝑡𝑘−1, 𝑡𝑘], and the 

default loss is  𝑙𝑘 = ∑ 𝑁𝑖(1 − 𝑅𝑖)
𝑑𝑘
𝑖=1 . 𝐿𝑘 = 𝑙𝑘 + 𝐿𝑘−1 is the cumulative default 

losses till 𝑡𝑘; 

Step8: Let 

 𝑃𝑘
[𝑎,𝑏] = �

𝑏 − 𝑎, 𝑖𝑓 𝐿𝑘 < 𝑎
𝑏 − 𝐿𝑘 , 𝑖𝑓 𝑎 < 𝐿𝑘 < 𝑏

0, 𝑖𝑓 𝐿𝑘 > 𝑏
�     (18) 

Step9: The discounted value of the return side of tranche [𝑎, 𝑏] is: 

 𝐴 = ∑ (𝑡𝑘 − 𝑡𝑘−1)𝐾
𝑘=1 𝑃𝑘

[𝑎,𝑏]𝐸𝐵(0, 𝑡𝑘)     (19) 

The discounted value of the loss side is: 

 𝐵 = ∑ �𝑃𝑘−1
[𝑎,𝑏] − 𝑃𝑘

[𝑎,𝑏]�𝐾
𝑘=1 𝐸𝐵(0, 𝑡𝑘)     (20) 

Step10: The price of tranche [𝑎, 𝑏] is s = 𝐵�

𝐴�
. 𝐴̂ and 𝐵�  are the expected values from 

the Monte Carlo simulation. 

From the above steps of the implementation of the dynamic model, we can see 
that the first default probability of debtor i on [𝑡𝑘−1, 𝑡𝑘] is the key to the model. 
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Usually, the debtor i’s risk-neutral default probability can be obtained from a bond 
price with higher liquidity or the spread of credit default swap. Here we introduced a 
calculation method for 𝐹𝑖(𝑡𝑘) provided by Hull and White (2001). 

𝑞(𝑡)∆𝑡 is the default probability between 𝑡 to 𝑡 + ∆𝑡 observed at the time 0. 
ℎ(𝑡)∆𝑡 is the default probability between 𝑡 to 𝑡 + ∆𝑡 observed at the time 𝑡, which 
assumes that there is no default in [0, 𝑡]. The relationship between 𝑞(𝑡) and ℎ(𝑡) is: 

 𝑞(𝑡) = ℎ(𝑡)𝑒𝑥𝑝 �−∫ ℎ(𝑠)𝑑𝑠𝑡
0 �      (21) 

The 𝑞𝑖(𝑡𝑘) represents the 𝐹𝑖(𝑡𝑘) above. Here we abbreviate 𝑞𝑖(𝑡𝑘) as 𝑞𝑖𝑘. We 
also assume that 𝑞(𝑡) is constant as 𝑞𝑘 between 𝑡𝑘−1 and 𝑡𝑘. The price of the bond 
issued by debtor i at 𝑡0 is 𝐵𝑖. 𝐺𝑖 is the price of risk-free bond at 𝑡0. Assume that we 
can get k bonds with high liquidity and identical credit status, and the expiration date 
is 𝑡𝑘,𝑘 = 1⋯𝐾 respectively. 𝐶𝑖(𝑡) represents the expected loss for the debtor i at 
time t. The discounted rate is 𝑣(𝑡). The present value of default for the ith bond 

at 𝑡𝑘is 𝛽𝑖𝑘 = ∫  𝑣(𝑡)𝐶𝑖(𝑡)𝑑𝑡
𝑡𝑘
𝑡𝑘−1

. And,𝐺𝑖 − 𝐵𝑖 = ∑ 𝑃𝑖𝑘𝛽𝑖𝑘𝑖
𝑘=1 . Therefore, we have 

 𝑃𝑖𝑖 = 𝐺𝑖−𝐵𝑖−∑ 𝑃𝑖𝑘𝛽𝑖𝑘𝑖−1
𝑘=1
𝛽𝑖𝑖

, 𝑖 = 1⋯𝑘     (22) 

This represents the first default probability for the ith bond at [𝑡𝑖−1, 𝑡𝑖]. 

4. Examples for the Synthetic CDO Pricing in the Integrated Model 

4.1 Parameter Estimation 

The parameters of the synthetic CDO pricing model and dynamic integration 
model are divided into the following categories: the debtor's default probability in 
underlying asset pool, factor-loading coefficients in the factor model, the parameters 
of the factor’s distribution and the parameters in the recovery model, and the 
parameters in the dynamic copula-GARCH model. We will give details on how to 
estimate these parameters from the available data. 

4.1.1 Default Probability 

In order to obtain the joint distribution function of default, we first need to 
obtain the debtor’s default probability, that is, the marginal distribution of default. 
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Assume that default time  𝜏𝑖 follows exponential distribution  𝑄𝑖(𝑡) = 1 − 𝑒−𝜆𝑖𝑡 . 
Default intensity 𝜆𝑖 can be estimated by the spreads of the identical CDS debtors. 
The relationship between the CDS spread and the default intensity are approximate 

as 𝜆𝑖 ≈
𝑟𝐶𝐷𝑆
𝑖

1−𝑅
 (Duffie and Singleton, 2003). 

4.1.2 Factor Model 

The factor coefficient of the normal copula-factor model is the coefficient 𝜌 
between the debtors. We can get the implied coefficient from the quotation of 
standard tranches, similar to getting the implied volatility from the Black-Scholes 
pricing model. We can get the implied coefficient from the equity tranche, and then 
determine the prices of other tranches. Similarly, we can also get the parameters of 
the factor-loading coefficient through the quotation of the high-liquidity DJ iTraxx 
(CDX) index standard tranches. 

However, more than one parameter requires estimation. Therefore, we use the 
least square method. The basic idea is to minimize the sum of the square of the 
difference between the quotation and the integrated model. l. This method promotes 
solving for the implicated coefficient. The method of solving for the implied 
coefficient ensures that the pricing of the model fits the quotation closely. The least 
square method offers a comprehensive consideration of the impact of model 
parameters of all the tranches' quotations and improves the fitness of the quotation 
on the whole.  

4.1.3 Recovery Rate 

The parameters of the beta distribution in the recovery rate model can be 
determined by the mean and variance of the historical recovery rate. The 
factor-loading coefficient can be obtained from the historical data of the recovery 
rate in (4) and (16) by using the least square method. 

4.1.4 Copula-GARCH Model 

The parameters in the copula-GARCH model can be estimated from the 
historical data of the macro-economic factors and interest rate factor by using the 
two-stage maximum likelihood estimation. 

The first stage is to estimate the GARCH equations, i.e., Equation (17) of the 
macro-economic factors and the interest rate factor, and determine the degrees of the 
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freedom parameter 𝑣 in the marginal distribution of the t distribution. 

The second stage is to estimate the Clayton copula function parameter 𝜃 using 
the maximum likelihood estimation method: 

 �
𝑢1
𝑗 = 𝑡𝑣1�𝑢𝑐𝑡

𝑗 �
𝑢2
𝑗 = 𝑡𝑣2�𝑢𝑟𝑡

𝑗 �

𝜃� = 𝐴𝑟𝑔max𝜃 ∑ 𝑙𝑛�𝑐𝜃�𝑢1
𝑗 ,𝑢2

𝑗��𝑁
𝑗=1

�     (23) 

where  𝑐𝜃(∙) is the intensity function of the Clayton copula. In fact, the 
copula-GARCH model is more flexible than a normal multivariate GARCH copula 
in the parameters estimation. 

4.2 Numerical Simulation 

4.2.1 Key Parameters Comparison between the Standard and Integrated Model 

We assume that 𝑋𝑐 ,𝑋𝑟 , 𝜀𝑖 are all independent from each other, and they follow 
the standard normal distribution. The risk-free interest rate and recovery rate are 
constants. Due to data limitations of the CDO tranches quotation, we will explain the 
differences of the key parameters of the standard model and integrated model 
through numerical examples. 

Consider a 5-year synthetic CDO on a basket of 100 CDSs with different credit. 
There are three tranches according to the level of risk and return: equity, mezzanine 
and senior. They bear the losses in the CDO asset pool, 0%-5%, 5%-25% and 
25%-100%, respectively. The intensity of the debtors 𝜆𝑖 is assumed to have uniform 
distribution on 0.0005 to 0.025, and the mean is 0.015. Table 1 contains the 
parameters in the standard and integrated models. 

[Insert Table 1 approximately here] 

The integrated model captures the correlation between the debtors through the 
heavy tail of the risk driving factors. Furthermore, in order to consider the impact of 
associated market risk and credit risk on the credit status of the debtor, we use the 
Clayton copula function with a right tail to describe the correlation structure of 
market risk and credit risk factors. Figure 2 shows the differences of the risk driving 
factors distribution between the integrated model and the standard model. Compared 
with the standard model, there is more risk driving factors in the integrated model 
with the heavy tail, especially the left tail. In this way, we can characterize the 
impact on the CDO tranches price when the market environment deteriorates and a 
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verity of debtors default at the same time. In addition, when the recovery rate is fixed, 
the total loss distribution will be solely determined by the distribution of the default 
probability. Therefore, the character of the total loss in the two models can be 
reflected by comparing the difference of the default probability distribution in the 
integrated model and the standard model. 

[Insert Figure 2 approximately here] 

Figure 3 depicts the relation between the total loss distribution and conditional 
default probability of each obligator. The results show that the default probability 
distribution is closer to the Y-axis (i.e. to the completely related condition) for the 
integrated model. It implies that for a given conditional default probability, the whole 
asset pool have a heightened likelihood to experience loss under the integrated model. 
This evidence suggests that the integrated model captures a high correlation between 
the debtors compared to the standard model. 

 [Insert Figure 3 approximately here] 

When default probabilities and recovery rates are given, we can calculate the 
expected loss of the CDO tranches by the approach set forth in Section 3.2.2. The 
CDO prices can be obtained from the CDO pricing model in the Section 3.2.3. 

Table 2 provides the fair yield of all the CDO tranches in the standard model 
and integrated model. Results in Table 2 show that the yields (in basis points) of 
equity and senior tranches are 8% and 142% higher, respectively in the integrated 
model than in the standard one. On the other hand, the premium of mezzanine 
tranche is 29% lower. Possible explanation is that the standard model underestimates 
the fat-tail loss. 

We find some support for the underestimation. We consider the integrated 
models in two situations. The first is the integrated model with a constant risk-free 
interest rate, i.e., the integrated model CI. Another is the integration model with a 
constant recovery rate, i.e., the integrated model CR. The estimation results are 
shown in Table 2. 

[Insert Table 2 approximately here] 

We find that there is no obvious difference between integrated models with a 
constant risk-free rate. Thus the impact of a stochastic risk free rate on the 
discounted cash flow is incapable of explaining the difference between the standard 
model and the integrated model. The constant recovery rate does not influence the 
pricing of the equity tranche or the senior tranche. However, the yield of the senior 
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tranche is significantly reduced in the integrated model under the assumption of a 
constant recovery rate. Therefore, the impact of the random recovery rate is 
significant on the asset loss distribution. 

However, the price of the senior tranche in the integrated model with a constant 
recovery rate is much higher than the one in the standard model. In other words, the 
characterization of the default correlation structure is the main reason for the 
difference between the models, and the recovery rate is also an important factor. 

4.2.2 Changes in the Parameters of the Integrated Model 

1) Degree of Freedom 𝒗 

The accurate characterization of the default correlation is the key to the 
integrated model. We describe the correlation between the debtors by the correlation 
coefficient 𝜌 in the normal copula-factor model. In the integrated model, in addition 
to systemic risk loading factors 𝜌𝑐 ,  𝜌𝑟 , the parameters of risk factors and the 
correlation of the systemic risk factors also influence the relation between the 
debtors greatly. Therefore, they all affect the pricing of the CDO tranches in the 
integrated model. 

We further discuss the relationship of the CDO tranche price and the default 
correlation structure. Research has been conducted on the relationship between CDO 
tranche price and the correlation coefficient 𝜌. That research has concluded that if the 
correlation coefficient 𝜌 becomes bigger, the price of an equity tranche will be lower 
and the senior tranche price will be higher. Here we discuss the relationship between 
the risk factor distribution parameter  𝑣 , systemic risk factors related structure 
parameters 𝜃 and the price of CDO tranches. 

Table 3 shows the CDO tranche prices with different degrees of freedom 
correspondingly. 𝑣(𝑣 > 2) is the parameter used to describe the distribution of tail 
correlation. The smaller the value, the greater the relevance of the distribution of the 
tail, and the heavier the tail is. As 𝑣 tends to infinity, the t-distribution converges to 
standard normal distribution, without tail correlation. 

[Insert Table 3 approximately here] 

As illustrated in Table 3, equity and senior tranches are more expensive as 𝑣 
decreases. When 𝑣 decreases, the tail of risk factors becomes heavier. A heavier tail 
of specific risk factors also means that the default probability for a person increases; 
as there will be smaller losses, the price of the senior tranche increases. 
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2) Factor Correlation Parameter 𝜽 

Table 4 shows the different prices of CDO tranches under various 𝜃 , the 
parameters describing the related structure between the systemic risk factors. 
When 𝜃 increases the left tail correlation of the Clayton copula function is enhanced, 
and the likelihood of taking extreme values to the common risk factors increases. 
Thus the risk of default of a multiplicity of debtors increases at the same time. As 
illustrated in the Table 4, the senior trance price will increase with 𝜃. 

[Insert Table 4 approximately here] 

3) Systemic Risk Loading Factors 𝝆𝒄,  𝝆𝒓 

Table 4 shows the different prices of CDO tranches under various systemic risk 
loading factors. The results shows that the premium of senior (equity) tranche 
increases (decreases) with the absolute correlation 𝜌, while the relation between the 
price of mezzanine tranche and coefficient 𝜌 is uncertain. This is consistent with 
previous findings in the literature (e.g. Hull et al., 2005). 

[Insert Table 5 approximately here] 

4.3 Examples in the Dynamic Integrated Model 

The probability of the first default for the debtor i between 𝑡𝑘−1 and 𝑡𝑘 is the key 
to the dynamic pricing model. We rate the credit of underlying assets into different 
levels. In Table 6, we show the density of default probability 𝑞𝑘 of the BBB rating. 
Here we assume that the density of default probability is constant within one year. It 
is noteworthy that the frequency of CDO tranche payments is usually 0.25 years. 
Therefore, we need to get the simulate values of the risk factors from the 
copula-GARCH model based on one year. 

[Insert Table 6 approximately here] 

The dynamic model considers the impact of timing characteristics of the 
systemic risk driving factors on the CDO pricing. The financial time series often 
have timing and clustering features, which means that a large/small fluctuation 
usually follows another one. This character of volatility is greatly significant for 
capturing the dynamic behavior of the credit environment over time. A GARCH 
model can better characterize the volatility of financial time series, and thus can 
better describe the conditions for risk driving factors distribution. Therefore we can 
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correctly obtain the impact of the change of a debtor's credit quality on CDO pricing. 
A high regression coefficient in the GARCH model means that when a shock occurs, 
multi-periods of credit will be affected, which will influence the cumulative loss of 
the entire asset pool. Table 7 shows the CDO tranches pricing results for different 
regression coefficients in the dynamic integrated model. Obviously, as the 
coefficients are higher, the CDO tranche prices are higher. 

[Insert Table 7 approximately here] 

5. Conclusion and Further Research 

CDOs are a financial instrument with multiple risks. Market risk and credit risk 
have complicated interaction, and the development of CDOs has established stronger 
internal mechanisms between the two risks. The CDO pricing model should be able 
to reflect the effect of the interaction of market risk and credit risk on losses in the 
CDO asset pool. 

The integrated model in this paper not only describes the character of the fat-tail 
of loss distribution, but also reflects the systemic risk caused by the superposition of 
different risk levels. Meanwhile, default probability, recovery and risk-free interest 
rates are influenced by the common risk driving factors. The model not only makes 
the portrayal of pricing parameters and the relationship more objective, but it also 
facilitates calculation and implementation. In addition, the dynamic integrated model 
may reflect the impact of the change of the credit quality of the debtors’ asset pool 
on the expected loss. 

The simulation results show that compared to the standard model, the premium 
of the equity and senior tranches is higher while the premium of the mezzanine 
tranche is lower under the integrated model. The main reason for such differences is 
the different characterization of default correlation structures, especially the 
interaction between market risk and credit risk. In fact, market risk factors and credit 
risk factors have lower tail dependency that can measure the losses in the asset pool 
with the superposition of effects produced by the interaction between the risks. The 
recovery rate is also an important factor affecting CDO pricing. However, the 
risk-driving factors determine the debtor's default correlation structures, as well as 
the recovery rate. In some sense, CDO tranche pricing will ultimately depend on the 
risk-driving factors. Reducing degrees of freedom 𝑣 of t distribution and increasing 
the Clayton copula parameters 𝜃 have the same effect as increasing the correlation 
coefficient 𝜌. The result is that the higher the 𝜌 in a normal copula-factor model, the 
higher the yield of the senior tranche and the lower the yield of the equity tranche. In 
the dynamic integrated model, the regression coefficient plays an important role in 
the pricing of synthetic CDOs. 
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Due to data limitation, we are not able to conduct empirical comparisons 
between the standard model and our integrated model, nor can we discuss the 
hedging performance of the integrated model with respect to the model developed by 
Frey and Backhaus (2010). The focus of this paper is to propose an alternative CDO 
pricing that emphasizes the impact of interdependent market and credit risk on the 
asset pool and explain how it works in numerical examples. Empirical comparisons 
in the spirit of Longstaff and Rajan (2008), and assessing the pricing and hedging 
performance using real data are both worth independent research in the future.
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Table 1 
Parameters in the Standard Model and Integrated Model 
Parameters in the Synthetic CDO Model 
1. Number of underlying assets: 100; Face value: 1; Maturity: 5 years. 
2. Default intensity: 0.015; Payment frequency: 0.25 years. 
3. Equity tranche: 0%-5%; Mezzanine tranche: 5%-25%, Senior tranche: 

25%-100%; 
Parameters in the Standard Model 
1. 𝜌𝑐 = 0.2; 𝜌𝑟 = −0.05; 
2. Risk-free Rate 𝑟 = 6%; 
3. Recovery Rate 𝑅 = 40%. 
Parameters in the Integrated Model 
1. 𝜌𝑐 = 0.2; 𝜌𝑟 = −0.05; 
2. 𝑣𝑐 = 𝑣𝑟 = 𝑣𝑖 = 4, 𝑖 = 1⋯100; 
3. 𝜃(Parameter in the Clayton Copula Model) = 2; 
4. Recovery Rate Model Parameters: Mean=0.4; Standard Deviation=0.35; 𝑎 =

0.4;  𝛽 = −0.25;  
5. Risk-free Rate Parameters: 𝜃 = 0.06; 𝑟0 = 6%; 𝑘 = 0.4; 𝜎𝑟 = 0.01. 
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Table 2 
CDO Tranche Prices in Different Models 

CDO Tranche 
(bps, per annum) 

Standard 
Model 

Integrated 
Model 

Integrated 
Model CI 

Integrated 
Model CR 

Integrated 
Model SR 

Equity Tranche 
(0%-5%) 

1909 2062 2045 2039 2046 

Mezzanine Tranche 
(5%-25%) 

764 544 572 512 534 

Senior Tranche 
(25%-100%) 

43 104 100 86 79 

 
 
Table 3 
CDO Tranche prices for Different Parameters 𝒗 

CDO Tranche 
(bps, per annum) 

𝑣 = 2.5 𝑣 = 3 𝑣 = 4 𝑣 = 5 

Equity Tranche 
(0%-5%) 

2401 2112 2062 2042 

Mezzanine Tranche 
(5%-25%) 

503 535 544 562 

Senior Tranche 
(25%-100%) 

136 115 104 96 

 
 
Table 4 
CDO Tranche prices for Different Parameters 𝜽 

CDO Tranche 
(bps, per annum) 

𝜃 = 0.1 𝜃 = 0.5 𝜃 = 2 𝜃 = 4 

Equity Tranche 
(0%-5%) 

2123 2096 2062 2030 

Mezzanine Tranche 
(5%-25%) 

576 553 544 545 

Senior Tranche 
(25%-100%) 

80 95 104 121 
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Table 5 
CDO Tranche prices for Different Parameters 𝝆𝒓, 𝝆𝒄 

CDO Tranche 
(bps, per annum) 

ρ𝑐 = 0.1 
ρ𝑟 = −0.025 

ρ𝑐 = 0.2 
ρ𝑟 = −0.05 

ρ𝑐 = 0.3 
ρ𝑟 = −0.075 

Equity Tranche 
(0%-5%) 

1905 2062 2532 

Mezzanine Tranche 
(5%-25%) 

556 544 565 

Senior Tranche 
(25%-100%) 

114 104 96 

 
 
Table 6 
Default Probability Intensity for Rating BBB 

Default Time (Year) Default Probability Intensity 
0~1 0.0219 

1~2 0.0242 

2~3 0.0264 
3~4 0.0285 

4~5 0.0305 
 
 
Table 7 
CDO Tranche Prices in the Integrated Model 

CDO Tranche 
(bps, per annum) 

𝜙1𝑐 = 𝜙1𝑟 = 0.2 
𝑑𝑐 = 𝑑𝑟 = 0.6 

𝜙1𝑐 = 𝜙1𝑟 = 0.4 
𝑑𝑐 = 𝑑𝑟 = 0.8 

Equity Tranche 
(0%-5%) 

1987 2362 

Mezzanine Tranche 
(5%-25%) 

602 531 

Senior Tranche 
(25%-100%) 

102 131 

Note: 1. 𝑐𝑐 = 0.15; 𝑐𝑟 = 0.1; 
2. 𝜇𝑐 = 𝜇𝑟 = 𝑤𝑐 = 𝑤𝑟 = 0; 
3. 𝜎𝑐 = 0.2; 𝜎𝑟 = 0.01; 
4. Other parameters are the same with the ones in the integrated model, see Table 1. 
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Figure 1 
Main Steps of CDO Tranche Pricing 
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Figure 2 
Simulated Distribution of the Risk Driving Factors 
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Figure 3 
Default Probability Distribution  
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